Quiz 4
You may use computers to check, but you most show the calculus you did, including all steps to find the following.
(1) Given $f(x)=\sqrt{\frac{x^{2} \cos x}{2 x+3}}$, find $f^{\prime}(x)$
(7 points)
(Note: there is an easier way to do this than just directly... the computer does not always show you the easiest way)
Use logarithmic differentiation: Find $\frac{d y}{d x}$

$$
\begin{aligned}
& \ln y=\ln \sqrt{\frac{x^{2} \cos x}{2 x+3}} \\
& \ln y=\frac{1}{2}\left[\ln \left(x^{2} \cos x\right)-\ln (2 x+3)\right] \\
& \frac{d}{d x} \ln y=\frac{d}{d x}\left[\frac{1}{2}(2 \ln x+\ln \cos x-\ln (2 x+3)]\right. \\
& \frac{1}{y} \frac{d y}{d x}=\frac{1}{x}+\frac{1}{2} \cdot \frac{-\sin x}{2 \cos x}-\frac{1}{2} \frac{2}{2 x+3} \\
& \frac{d y}{d x}=y\left(\frac{1}{x}-\frac{1}{2} \tan x-\frac{1}{2 x+3}\right) \\
& \frac{d y}{d x}=\sqrt{\frac{x^{2} \cos x}{2 x+3}}\left(\frac{1}{x}-\frac{1}{2} \tan x-\frac{1}{2 x+3}\right)
\end{aligned}
$$

(2) Differentiate: $y=\sin ^{-1}(2 x)+x \sqrt{1-x^{2}}$
(6 points)

$$
\begin{aligned}
& y^{\prime}=\frac{1}{\sqrt{1-(2 x)^{2}}} \frac{d}{d x}[2 x]+\sqrt{L_{\text {product }}} \begin{array}{l}
\text { andine. }
\end{array}\left(\frac{d}{d x}\left[\sin ^{-1} x\right]=\frac{1}{\sqrt{1-x^{2}}}\right) \\
& y^{\prime}=\frac{2}{\sqrt{1-9 x^{2}}}+\sqrt{1-x^{2}}-\frac{x^{2}}{\sqrt{1-x^{2}}}\left(1-x^{2}\right)^{-1 / 2}(-2 x)
\end{aligned}
$$

(3) Evaluate: $\int \frac{1}{2+9 x^{2}} d x$
(7 points)

$$
\begin{gathered}
u=3 x \\
\frac{1}{3} \int \frac{1}{2+u^{2}} d u \\
\frac{1}{3} \cdot \frac{1}{\sqrt{2}} \tan ^{-1} \frac{u}{\sqrt{2}}+c \\
\frac{1}{3 \sqrt{2}} \tan ^{-1}\left(\frac{3 x}{\sqrt{2}}\right)+C
\end{gathered}
$$

